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EFFECT OF TEMPERATURE AND SLOPE OF A GAS MAIN IN NONISOTHERMAL 

UNSTEADY GAS MOVEMENT 

L. E. Danielyan UDC 533.6 

The effect of the temperature and slope of a pipeline on the variation in gasdynamic 
parameters is studied using numerical methods. 

The solution of the problem of the unsteady movement of a real gas through a long gas 
main has great theoretical and practical importance. The problem becomes relatively com- 
plicated when the nonisothermy and slope of the gas main are taken into account. The effect 
of the slope of the gas main on the parameters of the moving gas becomes important in moun- 
tainous terrain or when the gas is fed through a long gas main of large diameter with a slope 
which varies (even slightly) from horizontal. 

Many reports have been devoted to these problems. Numerous linearized solutions of the 
problem of unsteady movement of a real gas through long gas mains are known([l-9] and others). 

The case of a vertical pipe set in natural soil, which occurs when gas is extracted from 
great depths, is of particular interest. 

The unsteady nonisothermal movment of a gas through a long pipeline is examined below. 

i. Differential Equations of Motion. Initial and Boundary Conditions 

Let us consider the one-dimensional, unsteady, nonisothermal motion of a gas in a long 
gas main. Such gas motion can be described by the system of differential equations [i] 

Op ~gu 2 
---- + pgsin ~; 
Ox 86 

Op 0 
- o-? = 0-7 (ou); ( 1 . i )  

p = 9 g R T ;  G = gsgu. 

It is assumed that the gas temperature varies along the gas main as a function of the co- 
ordinate and is a function assigned in advance. 

Placing the origin of coordinates at the start of the pipe, directing the axis along the 
length of the pipe, and assuming for determinacy that the gas temperature along the pipeline 
varies by a linear law, one can express T(x) by the following equation [i0]: 

T (x) = T s --(T s -- Te) x (1.2) 
L ' 
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where T s is the gas temperature at the start of the pipe, T e is the gas temperature at the 
end of the pipe, and L is the length of the pipeline. 

Using obvious mathematical transformations, the system (i.I) can be reduced to the fol- 
lowing nonlinear differential equation of second order relative to the square of the pres- 
sure: 

Ox 2 = 46gRT P Ox 2 6gR2T Ot T Ox R-----T-- - ~ x  + RT ~ Ox P, ( 1 . 3 )  

where P(x, t) = pZ(x, t). 

We assign the intialand boundary conditions: 

P = ~ = const  ~ at x = 0 ; 

o_pP.= ~'RTe G~(t) Pes inc*  a t x - - - - L ;  (1.4) 
Ox 4 6gs 2 RT e 

P = Po (x, ~) at t : O; 

Here G(t) is a given function characterizing the law of variation of the gas flow rate at the 
end of the pipeline; Po(x, a) is a function showing the law of variation of the square of the 
pressure along the pipeline with a steady mode of nonisothermal motion, determined by the 
equation [ii] 

2g sin tz 

P s ( I + K L )  Rrs • --Pc 
Po (x, c*) = 2g ,in 

(I + KL) m'sK _ ( I  + KL) 2 

2g sin tz 

(1 + Kxp-- [Ps (1 + KL) ~ --Pe] (1 + Kx) RTsK 
2g ~in~ , ( 1 . 5 )  

( I + K L )  nrsK - - ( I + K L )  ~ 

where Ps and Pe are the squares of the pressures at the start and end of the pipeline; K = 

Te-- Ts/LTs. 

By determining the pressure from Eq. (1.3), one can calculate the velocity, flow rate, 
and density of the gas from the equations 

1 / ~  88gR T(x) ap(x, t) 86gsinc~ . (1.6) 
u(x, t) 

V ~, p (x ,  t) Ox ~ ' 

O(x, t ) =  - - !  - s  - p(x, t )u(x,  t); (1.7) 
RT (x) 

p(x, t ) -  ~ p(x, O. (1.8) 
gRT (x) 

Thus, the problem is reduced to the solution of Eq. (1.3) with the boundary and initial 

conditions (1.4). 

2. Solution of Stated Problem 

Before proceeding to the solution of the problem, Eq. (1.3) and conditions (1.4) and (1.2) 
are preliminarily reduced to dimensionless form using the following relations: 

P = ~ P'; x = Lx'; t = tot'; T = ~ T ' ;  O = OoO', ( 2 . 1 )  

where the quantities with primes are dimensionless; Ps, L, to, Go, and T s are the character- 
istic pressure, length, time, flow rate, and temperature, respectively. 

The gas flow rate in the steady mode of operation is taken as the characteristic flow 
rate, the square of the gas pressure at x = 0 for the steady mode (1.5) is taken as the char- 
acteristic pressure, the length of the gas main is taken as the characteristic length, and 
the gas temperature at x = 0 is taken as the characteristic temperature. 

4 0 0  
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Fig. i. Pressure distributions along gas main for sep- 
arate times: a) with a = 0; b) with a = ~/2. 

The characteristic time is determined from Eq. (1o3): 

/ / / -  ~L s 

to = 4 6gRT s 
(2.2) 

In dimensionless variables Eq. (1.3) and the boundary and initial conditions (1.4) and 
(1.2) take the form 

V ( +  OT 2Lsin~z ) OP 4 L s i n a  OT p , ( 2 , 3 )  O2P 1 OP 2 Ls in~ OP + . 
Ox 2 -- TP Ox RTs T ~ Ot Ox RTsT ~ + RTs T 2 Ox 

P = I  at x = 0 ;  z 

OP 2LPe sin 
- - = A G e ( t )  at x = l ;  

Ox 

P = Po(x, =), r = l - -  (1 Te ) x at t = O, 

where A = --(XRTeLG~/46gPssa). The primes are omitted for convenience of notation. 

We can represent Eq. (2.3) in the form 

(2.4) 

( 2 . 5 )  

OP _ 1 O*P _1_ C x -4- C, sin c~ OP Jr 2C1C ~ sin a p ,  

Ot M Ox 2 MT  Ox MT ~ 
( 2 . 6 )  

where 

OT 2L 1 1, /"  T OP 
�9 C 2 . . . .  ; M =  V C2sina" Ox ' RT s -T-- P Ox 

Defining 

we obtain 

In [12] the model equation 

C 1 + C 2 s i n ( z - = - - N ;  2C1C2 sin ~ -- H, 

MT MT ~ 

OP 1 O*P OP 
N - - - -  - -  HP. 

Ot M Ox 2 Ox 

O ~  1 0 2 r  OcD 
-- N - - - - H O D +  S 

Ot M Ox 2 Ox 

(2.7) 
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Fig. 2. Variation in velocity along length of gas 
main at separate times: a) with a = 0; b) with a = 
~/2. 
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TABLE i. Variation in Gas Flow Rate along Length of Gas Main 
and with Time 

x 

t 
o 0,25 o,35 o,45 I o,55 0,65 I 0.75 I 0.85 I o,95 ] i 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3,402 
3,503 
3,394 
3,181 
2,935 
2,699 
2,489 
2,306 
2,153 
2,090 
1,938 

0 ] 9,337 
0,5 5,761 
1 3,797 

3,410 
3,495 
3,385 
3,172 
2,927 
2,693 
2,484 
2,302 
2,150 
2,027 
1,936 

7,342 
5,686 
3,701 

3,412 
3,490 
3,376 
3,162 
2,919 
2,687 
2,479 
2,298 
2,147 
2,025 
1,935 

6,472 
5,596 
3,581 

3,416 
3,484 
3,363 
3,149 
2,908 
2,678 
2,471 
2,292 
2,142 
2,022 
1,932 

3,419 
3,475 
3,346 
3,132 
2,893 
2,666 
2,462 
2,285 
2,136 
2,017 
1,929 

3,420 
3,462 
3,324 
3,119 
2,874 
2,651 
2,450 
2,276 
2,129 
2,012 
1,925 

3,420 
3,444 
3,295 
3,080 
2,850 
2,632 
2,436 
2,265 
2,121 
2,006 
1,921 

3,415 1 3,401 
3,4171 3,369 
3,2561 3,204 
3,04412,999 
2,821 [ 2,788 
2,689/2,583 
2,41812,398 
2,252 / 2,236 
2,1Ill 2,099 
1,998 / 1,990 
1,916 / 1,910 

(z = n/2 

3,350 
3,250 
3,130 
2,940 
2,740 
2,550 
2,370 
2,211 
2,080 
1,970 
1,901 

�9 5,680 14,961 4,31113,724t3,19612,72112,290 
5,4645,281,5,0364,7174,30913,7963,161 
3,406 3,173,2,877 2,616 2,087/1,587 1,011 

was examined and the method and system for its numerical solution were indicated. In com- 
paring (2.7) with this equation we note that the system for the solution of the equation 

presented can be applied to (2.7). 

The problem is solved by the trial run method. A program has been compiled on the Raz- 

dan-3 computer for this purpose. 

3. Numerical Example 

Let us present a concrete numerical example for the cases of a = 0 (horizontal gas main) 
and a = ~/2 (vertical gas main). For the solution of the problem we assign the following 

numerical data: 

L - -  3.10am; d - -  0.7m; T s = 360~ Ps = 25"104 kg/m2; 

T e = 240~K; 1. = 0.012; Pe = 5"10a kg/mz; 

R = 5 0  kg-m/kg.deg; G0(0 )=99  kg/sec;Go(2)=57kg/sec;  

(. -) p . ( x ,  0)-- 1 . 7 4 ( I - - 0 . a x ) 2 - - 0 . 7 4 ;  P .  , --~ =- 

( , sinO.'  0 + 1 . 0 2 ( 1 - - 0 . 3 x ) 0 " s ;  6( t )=G o 1 2 
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where Go is the average hourly gas flow rate and t is the time. 

A four,point implicit system is used and the practical convergence of the method is as- 
sured. 

The distributions of pressures and velocities along the length of the gas main at sep- 
arate times are presented in Figs. 1 and 2. In comparing the results obtained we note that 
with an increase in the slope the pressure increases considerably while the velocity de- 
creases. For example, at the time t = 1 the pressure at the middle of the pipeline increases 
by 1.2 times and at the end by 2 times. These changes increase even more with time within 
the limits of the period of rupture of the gas main. 

From Fig. 2 we note that in this case, in contrast to the isothermal mode of motion, the 
velocity curves, starting with a certain time, change the direction of concavity, and the 
velocities for fixed values decrease along the length of the gas main. 

With an increase in the slope of the gas main in the positive direction the velocities 
decrease considerably, while in the opposite case, conversely, they increase. In comparing 
the results of the numerical calculation for the cases of ~ = 0 and a = ~/2 we note that the 
velocity decreases by 1.5-2 times at separate times in separate pipeline cross sections. In 
this case in the initial cross sections, as it was assumed, the disparities are not very 
great, while in subsequent cross sections they increase with the passage of time. 

The variations in the gas flow rate along the length of the pipeline and with time as 
well as the results of the calculation with ~ = 0 and ~ = ~/2 are presented in Table i. In 
comparing these results we note that there is considerable quantitative disparity between 
them. 

Thus, the free convection term plays an important role in the equations of motion with 
nonisothermal unsteady gas movement through a sufficiently long gas main of large diameter. 
Consequently, in the planning of long gas mains in localities crossed by mountains it is 
necessary to allow for the variation in slope of the gas main. 

NOTATION 

P, pressure; x, coordinate; ~, coefficient of hydraulic resistance; p, density; u, veloc- 
ity; 6, hydraulic radius; g, acceleration of gravity; ~, slope of gas main; t, time; T, ab- 
solute temperature; R, gas constant; G, flow rate; s, cross-sectional area. 
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